Burnside’s Problem, spanning trees and tilings
نویسندگان
چکیده
منابع مشابه
Burnside’s Problem, spanning trees and tilings
In this paper we study geometric versions of Burnside’s Problem and the von Neumann Conjecture. This is done by considering the notion of a translation-like action. Translation-like actions were introduced by Kevin Whyte as a geometric analogue of subgroup containment. Whyte proved a geometric version of the von Neumann Conjecture by showing that a finitely generated group is nonamenable if and...
متن کاملOn the Simultaneous Minimum Spanning Trees Problem
Simultaneous Embedding with Fixed Edges (SEFE) [1] is a problem where given k planar graphs we ask whether they can be simultaneously embedded so that the embedding of each graph is planar and common edges are drawn the same. Problems of SEFE type have inspired questions of Simultaneous Geometrical Representations and further derivations. Based on this motivation we investigate the generalizati...
متن کاملDimers, tilings and trees
Generalizing results of Temperley [11], Brooks, Smith, Stone and Tutte [1] and others [10, 7] we describe a natural equivalence between three planar objects: weighted bipartite planar graphs; planar Markov chains; and tilings with convex polygons. This equivalence provides a measure-preserving bijection between dimer coverings of a weighted bipartite planar graph and spanning trees of the corre...
متن کاملLOCAL CHARACTERISTICS, ENTROPY AND LIMIT THEOREMS FOR SPANNING TREES AND DOMINO TILINGS VIA TRANSFER-IMPEDANCES Running Head: LOCAL BEHAVIOR OF SPANNING TREES
Let G be a finite graph or an infinite graph on which ZZ acts with finite fundamental domain. If G is finite, let T be a random spanning tree chosen uniformly from all spanning trees of G; if G is infinite, methods from [Pem] show that this still makes sense, producing a random essential spanning forest of G. A method for calculating local characteristics (i.e. finite-dimensional marginals) of ...
متن کاملNetworks and Spanning Trees
In 1857 Arthur Cayley (1821–1895) published a paper [9] that introduces the term “tree” to describe the logical branching that occurs when iterating the fundamental process of (partial) differentiation. When discussing the composition of four symbols that involve derivatives, Cayley writes “But without a more convenient notation, it would be difficult to find [their] corresponding expressions ....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Geometry & Topology
سال: 2014
ISSN: 1364-0380,1465-3060
DOI: 10.2140/gt.2014.18.179